Справочник строителя | Акустические материалы

Виды акустических материалов > Звукоизоляционные материалы, Звукопоглощающие материалы, Вибропоглощающие материалы

Виды акустических материалов и их свойства

Согласно ГОСТ Р23499-79, звукоизоляционные материалы и изделия подразделяются на:

звукопоглощающие материалы, предназначенные для внутренней облицовки помещений и устройств с целью создания в них требуемого звукопоглощения;

звукоизолирующие материалы, предназначенные для изоляции от воздушных масс;

звукоизолирующие материалы, предназначенные для изоляции от структурного (ударного) шума.

 
Звукопоглощающие материалы

Отсчет уровня громкости производят от так называемого порога слышимости, или неуловимого уровня, представляющего собой минимальную громкость звука, которую может уловить человек с нормальным слухом.

Звуковое поле, создаваемое каким-либо источником шума в помещении, слагается из наложения прямых и отраженных от препятствия звуковых волн. Отражение значительно увеличивает интенсивность звука и изменяет характер его звучания в худшую сторону.

Характеристика некоторых уровней громкости звука приведена в табл. 1.

Таблица 1. Уровни громкости звука
Характер звука
Громкость звука в фонах

Порог слышимости

0

Шелест листьев при слабом ветре

15

Тишина в аудитории

20

Шепот на расстоянии 1 м

30

Разговор вполголоса

50

Шум в машинописном бюро

70

Шум трамвая на узкой улице

90

Звук автомобильного сигнала на расстоянии 5-7 м

100

Начало болевых ощущений в ушах

130

Шум реактивного двигателя на расстоянии 2-3 м

150

 

Звуковая энергия, попадая на перегородку, и частично отражается от нее, частично поглощается и частично проходит через нее. Материалы, обладающие способностью в основном поглощать звуковую энергию, называются звукопоглощающими.

Звукопоглощающие материалы, снижая энергию отраженных звуковых волн, благоприятной изменяют характеристику звукового поля. Эти материалы должны быть высокопористыми.

Если в теплоизоляционных материалах желательно иметь замкнутые поры, то в звукоизоляционных лучше иметь поры, сообщающиеся и возможно меньшие по размеру.

Такие требования к строению звукоизоляционных материалов вызваны тем, что при прохождении звуковой волны через материал она приводит воздух, заключенный в его порах, в колебательное движение, и мелкие поры создают большее сопротивление, чем крупные. Движение воздуха в них тормозится, и в результате трения часть механической энергии превращается в тепловую.

Звукопоглощающие материалы по характеру поглощения звука делятся на:

панельные материалы и конструк­ции, в которых звукопоглощение обусловлено активным сопротивлением системы, совершающей вынужденные колебания под действием попадающей звуковой волны (тонкие панели из фанеры, жесткие древесноволокнистые плиты и звуконепроницаемые ткани);

пористые с твердым скелетом, в которых звук поглощается в результате вязкого трения в порах (пенобетон, газостекло);

пористые с гибким скелетом, в которых, кроме резкого трения в порах, возникают релаксационные потери, связанные с деформацией нежесткого скелета (минеральная, базальтовая, хлопковая вата).

На звукопоглощающие свойства материалов оказывает влияние и их упругость. В изделиях с гибким деформирующимся каркасом имеют место дополнительные потери звуковой энергии вследствие активного сопротивления материала вынужденным колебаниям под действием падающих звуковых волн.

В ряде случаев облицовка поверхности строительных конструкций осуществляется перфорированными листами из сравнительно плотных материалов (гипсокартон, асбестоцемент, металлические, пластмассовые листы), которые обеспечивают конструкциям, наряду со звукопоглощением, повышенную механическую прочность и декоративность.

Звукопоглощающее свойство материала характеризуется коэффициентом поглощения, который представляет собой отношение поглощенной звуковой энергии ко всей энергии, падающей на материал. За единицу звукопоглощения условно принимают звукопоглощение 1 м2 открытого окна.

К звукопоглощающим материалам относят те, которые имеют коэффициент звукопоглощения не менее 0,4 при частоте 1000 Гц («Защита от шума» СНиП 11-12-77).

Коэффициент звукопоглощения определяется в так называемой акустической трубе и подсчитывается по формуле:

αзв = Епогл / Епад

где Епогл - поглощенная звуковая волна,

Епад - падающая звуковая волна.

Коэффициенты звукопоглощения некоторых материалов представлены в табл. 2.

Таблица 2. Коэффициент звукопоглощения некоторых материалов
Наименование
Коэффициент звукопоглощенияпри 1000 Гц

Открытое окно

1

Акустические материалы:

 

Акустические минераловатные плиты АКМИГРАН

0,7-0,9

Акустический фибролит

0,45-0,50

Акустические древесноволокнистые плиты

0,40-0,80

Акустические перфорированные листы

0,4-0,9

Теплоизоляционные материалы, используемые для звукопоглощения:

0,25-0,4

Минеральные плиты

 

Пеностекло с сообщающимися порами

0,3-0,5

Пеноасбест

0,6-0,8

Деревянная стена

0,06-0,1

Кирпичная стена

0,032

Бетонная стена

0,015

 

Уровень шума также зависит от времени реверберации (времени звучания отраженного сигнала). Например, в помещении объемом 100 м3 с жесткими поверхностями время реверберации составляет от 5 до 8 сек. Если поверхность покрыта хорошо поглощающим акустическим материалом, время реверберации может составить менее 1 сек, т. е. как в хорошо меблированной жилой комнате.

Снижение времени реверберации до вышеупомянутого уровня увеличивает звуковой комфорт помещений, создает оптимальную рабочую атмосферу в лекционном или спортивном зале, офисе, кинотеатре или студии.


Звукоизоляционные материалы

Звукоизоляционная способность ограждений пропорциональна логарифму массы конструкции. Поэтому массивные конструкции обладают большей звукоизоляционной способностью от воздушного шума, чем легкие.

Поскольку устройство тяжелых ограждений экономически нецелесообразно, надлежащую звукоизоляцию обеспечивают устройством двух- или трехслойных ограждений, часто с воздушными зазорами, которые рекомендуется наполнять пористыми звукопоглощающими материалами. Желательно, чтобы конструктивные слои имели различную жесткость, а сама строительная конструкция имела хорошо герметизированные узлы примыкания элементов друг к другу.

Звукоизоляционные материалы, предназначенные для защиты от ударного шума, представляют собой пористые прокладочные материалы с малым модулем упругости. Их звукоизоляционная способность от ударного шума обусловлена тем, что скорость распространения звука в них значительно меньше, чем в плотных материалах с высоким модулем упругости. Так, скорость распространения звуковых волн составляет:

в стали

5050 м/с

в железобетоне

4100 м/с

в древесине

1500 м/с

в пробке

50 м/с

в пористой резине

30 м/с.

 

Звукоизоляционные материалы предназначены для снижения нежелательного вредного шума, отрицательно воздействующего на состояние человека. Допустимый уровень шума нормирует СНиП. Эти материалы должны быть влагостойкими, биостойкими, удовлетворять санитарно-гигиеническим требованиям и сохранять свои свойства в процессе длительной эксплуатации.

Звукоизоляционные материалы по структурным показателям подразделяются на:

пористо-ячеистые (ячеистый бетон, перлит);

пористо-губчатые (резина, пенопласт, вспененный полиэтилен);

пористо-волокнистые (вата).

По величине относительного сжатия эти материалы могут иметь скелет:

мягкий,

полужесткий,

жесткий,

твердый.

В полужестком и особенно в мягком скелете происходит усиление звукопоглощения падающих звуковых волн за счет упругих деформаций скелета материала.

Мягким скелетом обладают поливинилхлорид, полиуретановый поропласт и другие виды ячеистых пластмасс. Полужесткий скелет имеют стекловолокнистые, древесноволокнистые, минераловатные и содержащие асбест материалы.

Фибролит, а также различные виды легких бетонов относятся к материалам с жестким скелетом.

Повысить звукоизолирующую способность материала возможно, применив слоистую систему с прослойкой, в которой динамический модуль упругости материала должен быть несоизмеримо меньше упругости жестких слоев акустически однородной конструкции.

Звукоизоляционные материалы и изделия характеризуются вязкоупругими свойствами и должны обладать динамическим модулем упругости Е не более 15 МПа (доменный шлак, керамзит, песок).

Звукоизоляционные прокладочные материалы и изделия пористо-волокнистой структуры из различной ваты мягких, полужестких и жестких видов с Е не более 0,5 МПа или 5·105Н/м2имеют нагрузку на звукоизоляционный слой 0,002МПа(2·103Н/м2).

Пористо-волокнистые звукоизоляционные изделия должны обладать плотностью от 75 до 175 кг/м3.

Пористо-губчатые звукоизоляционные материалы и изделия должны быть из пористой резины и пенопластов с Е от 1 до 5 МПа.

Из деформативности скелета материала и упругих свойств воздуха, заключенного в материале, складывается деформативность звукоизоляционного материала. Мягкие звукоизоляционные материалы высокой деформативности под удельной нагрузкой 0,002 МПа имеют относительное сжатие свыше 15%. Как правило, это материал с пористо-губчатой или волокнистой структурой.

Полужесткие материалы имеют величину относительного сжатия в среднем от 5 до 10%, жесткие - до 5%, твердые - до 0.

Звукоизоляционные материалы применяются:

в перекрытиях - в виде сплошных нагруженных или ненагруженных (несущих лишь собственную массу) прокладок, штучных нагруженных и полосовых нагруженных прокладок;

в перегородках и стенах - в виде сплошной ненагруженной прокладки в стыках конструкций.

Вибропоглощающие материалы

Вибропоглощающие материалы предназначены для поглощения вибрации и вызываемых шумов при работе инженерного и санитарно-технического оборудования.

Для устранения передачи ударного звука применяются конструкции «плавающих» полов.

Упругие прокладки укладываются между несущей плитой перекрытия и чистым полом. Так­же необходимо упругими прокладками отделять конструкцию пола от стен по периметру помещения. Виды и свойства некоторых звукоизоляционных прокладок представлены в табл. 3.


Эффективными звукоизоляционными материалами являются полужесткие минераловатные и стекловатные на синтетическом связующем плиты и маты, а также прошивные стекловатные маты, древесноволокнистые плиты, пористая резина, поливинилхлоридные и полиуретановые пенопласты. Изготавливают ленточные и полосовые прокладки длиной от 1000 до 3000 мм и шириной 100, 150, 200 мм, штучные прокладки - длиной и шириной 100, 150, 200 мм. Изделия из волокнистых материалов применяются только в оболочке из водостойкой бумаги, пленки, фольги.

Вибропоглощающими материалами служат некоторые сорта резины и мастики, фольгоизол, листовые пластмассы. Вибропоглощающие материалы наносятся на тонкие металлические поверхности, при этом создается эффективная вибропоглощающая конструкция с высокой энергией на трение.

Кроме классификации по назначению, акустические материалы различаются и по другим признакам и имеют много общего с теплоизоляционными материалами.

Таблица 3. Значения модулей упругости некоторых звукоизоляционных прокладок

Наименование

Средняяплотность,кг/м3

Модуль упругости

Статистический, МПа

Динамический, МПа

Стекловолокнистые и минераловатные плиты и маты на синтетической связке

30-150

0,02-0,05

0,25-0,045

Мягкие древесноволокнистые плиты

20

0,3

1,4

Вспученный вермикулит в полиэтиленовых матах

150

0,15

1,8

Листы пенополиуретана

50

0,05

0,25

Листы пенополиэтилена

30

0,03

0,20

 

По строению и виду пористости звукоизоляции подразделяются на три группы:

звукоизоляционные материалы с волокнистым каркасом (минераловатные, асбестовые, фибролит, древесноволокнистые, древесностружечные, войлок);

ячеистые звукоизоляционные материалы, полученные методом вспучивания или пеновым способом (ячеистые бетоны, пеностекло);

звукоизоляционные материалы смешанной структуры, например акустические штукатурки, изготавливаемые с применением пористых заполнителей (вспученный перлит, вермикулит).

По внешнему виду (форме) они бывают:

сыпучие звукоизоляционные материалы;

штучные звукоизоляционные материалы (плиточные, рулонные, маты).


К звукопоглощающим материалам обычно предъявляют повышенные, по сравнению с теплоизоляционными материалами, требования по механической прочности и декоративности, поскольку их применяют для облицовки стен внутри помещения.

Так же, как и теплоизоляционные, они должны обладать низким водопоглощением, малой гигроскопичностью, быть огне - и биостойкими.

Поделитесь ссылкой в социальных сетях